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a b s t r a c t 

A new analytical solution, based on scale analysis and similarity transformation, is presented to solve a 

linearized form of the energy equation for the laminar forced convection over a sphere in a spherical co- 

ordinate system. Compact expressions for temperature, wall heat flux, and Nusselt number are developed 

as a function of the Reynolds number ( Re D ) and Prandtl number ( Pr ) for both isothermal and isoflux 

boundary conditions. A blending method is used to extend the range of the present analytical expres- 

sion to cover 0 < Re D < 10 5 and 0 . 7 < Pr < ∞ . The present analysis reveals that the theoretical averaged- 

Nusselt numbers for the laminar forced convection over isoflux (constant wall heat flux) and isothermal 

(uniform wall temperature) spheres are identical. The proposed model is verified by comparing the ana- 

lytical expression with the available experimental data over various Reynolds and Prandtl numbers. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Forced convection heat transfer from a solid sphere is an in- 

eresting problem that can be found in many applications. Many 

xperimental studies were conducted to investigate the laminar 

orced convection heat transfer from an isothermal sphere. Drake 

nd Backer [1] investigated the heat transfer from an isothermally 

eated sphere to a rarefied gas in a supersonic flow and pro- 

osed a correlation for air (Prandtl number, Pr = 0 . 7 ). Their cor-

elation was applicable for flows with a Reynolds number ( Re D ) 

n the range of 0 . 1 < Re D < 2 × 10 5 . Yuge [2] presented a correla-

ion for the Nusselt number (Nu), for 10 < Re D < 1 . 5 × 10 5 , to esti-

ate the heat transfer from the isothermal spheres to an air flow. 

aithby and Eckert [3] conducted a careful study to show the ef- 

ect of turbulence intensity on the average heat transfer from an 

sothermal sphere to an air stream within the 3 . 6 × 10 3 < Re D < 

 . 2 × 10 4 range. Whitaker [4] collected and analyzed experimen- 

al data from the literature and proposed an easy-to-use correla- 

ion for 3 . 5 < Re D < 7 . 6 × 10 4 and 0 . 7 < Pr < 380 . Vliet and Lep-

ert [5] experimentally studied the forced convection heat trans- 

er from an isothermal sphere to liquid water flow. The authors 

5] argued that in regions where there was a large temperature 

ifference between the solid surface and water, the effect of the in- 

uced natural convection might be significant, and recommended 

n empirical correlation for calculating the average heat transfer 
∗ Corresponding author. 
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oefficient from isothermal spheres to fluids with 2 < Pr < 380 for 

 < Re D < 3 × 10 4 . Kramers [6] carried out the most comprehen- 

ive study for the forced convention heat transfer from a solid 

phere using air ( Pr = 0 . 71 ), water ( Pr = 7 . 3 and Pr = 10 . 7 ), and

il ( Pr = 213 and Pr = 380 ) as fluids to cover a wide range of

randtl numbers. Will et al. [7] experimentally investigated the 

orced convection over isothermal spheres with the focus on fluid 

ows with higher Reynolds numbers ( > 3 . 3 × 10 5 ) than those con- 

idered in previous studies. They [7] claimed that there was a crit- 

cal Reynolds number beyond which there would be a sudden in- 

rease in the Nusselt number. 

Developing an analytical model to study the forced convection 

ver a sphere is considered a complex task without neglecting 

he flow separation that occurs at Re D > 20 . The analysis of the 

ass transport process from the surface of a sphere can be used 

o estimate the heat transfer, i.e., due to the analogy between the 

wo processes. Lee and Barrow [8] used an approximate integral 

ethod to solve the integrated boundary-layer equations for ax- 

symmetric flow over a sphere from the forward stagnation up to 

he point of separation by assuming quartics velocity and tempera- 

ure profiles. An integral method was also used by Garner and Keey 

9] to study the forced convection mass transfer from a sphere 

t low Reynolds numbers (2.3 to 255). An earlier modeling ap- 

roach using an integral method was presented by Frössling [10] , 

ho estimated the mass transfer rate for a naphthalene droplet 

vaporating in air ( Pr = 2 . 53 ) by analytically analyzing a laminar

oundary layer. Linton and Sutherland [11] compared the heat and 

ass transfer rates predicted by the theoretical work of Frössling 

https://doi.org/10.1016/j.ijheatmasstransfer.2022.123310
http://www.ScienceDirect.com
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Nomenclature 

a radius of a sphere, m 

A surface area of a sphere, m 

2 

D diameter of a sphere, m 

h convective heat transfer coefficient, W/m 

2 -K 

k thermal conductivity, W/m-K 

Nu Nusselt number, - 

Pr Prandtl number, - 

r radial direction, m 

Re Reynolds number, - 

T temperature, K 

V velocity, m/s 

V̄ e surface averaged-effective velocity, m/s 

˙ q ′′ w 

wall heat flux, W/m 

2 

Greek symbols 

ρ density, kg/m 

3 

β thermal expansion coefficient, 1/K 

α thermal diffusivity, m 

2 /s 

θ polar angle, rad 

ϑ non-dimensional temperature, - 

η similarity variable, - 

δT thermal boundary layer thickness, m 

δH hydrodynamic boundary layer thickness, m 

	 viscous dissipation, m 

2 /s 2 

Subscripts 

∞ related to ambient fluid 

w related to wall 

10] with the experimental data available in the literature for a 

ow over a sphere. Although, the theoretical local transfer rates 

ere in fair agreement with the experimental data over the front 

alf of the sphere, the results showed that the experimental local 

alues at the front stagnation point were 44% lower than for the 

heory and differed considerably between studies in the literature. 

Several studies were carried out to develop analytical solutions 

or the forced convection heat transfer from a sphere. Hsu [12] and 

ideman [13] derived analytical expressions to estimate the Nusselt 

umber for liquid metals ( Pr ∼ 0 . 01 ) flowing past a single sphere

y assuming a potential flow. Using the Laplace transform method, 

rake and Backer [1] obtained an expression for the Nusselt num- 

er by solving a simplified energy equation for the forced convec- 

ion over an isothermal sphere. Johnstone et al. [14] used a sepa- 

ation of variables method to provide a series solution for the lam- 

nar flow over an isothermal sphere by assuming a constant fluid 

elocity over the sphere. The separation of variables method was 

lso used by Dennis et al. [15] , who developed an analytical solu- 

ion for the forced convection of viscous flows over an isothermal 

phere at low values of Reynolds numbers. Ahmed et al. [16] de- 

eloped an analytical solution for the laminar flow over a sphere 

y approximating the energy equation to a form of a transient 

eat conduction equation for which a solution was available. They 

16] presented expressions for a surface averaged-effective veloc- 

ty at two asymptotes ( Pr � 1 and Pr � 1 ) and used a blending 

echnique to develop a general expression for the Nusselt number 

hat was valid for 0 ≤ Re D ≤ 2 × 10 4 and all Prandtl numbers. The 

lending method was used earlier by Yovanovich [17] to provide a 

eneral expression for the heat transfer coefficient for isopotential 

pheroids. In another work, Ahmed et al. [18] included the influ- 

nce of the turbulence level on the heat transfer characteristics in 

heir modeling approach. 

Our literature survey suggests that most of the experimental 

nd theoretical studies were focused on forced convection over an 
2 
sothermal sphere and that there is scarcity of information about 

soflux spheres (constant surface heat flux). To the best of our 

nowledge, there is no study that compared the theoretical heat 

ransfer coefficients for isothermal and isoflux spheres. To this end, 

he objective of this study is to address this gap by developing new 

nd compact expressions for temperature distribution and heat 

ux for the laminar forced convection heat transfer from a heated 

phere, for both isothermal and isoflux boundary conditions. Both 

cale analysis and similarity transformation approaches are used to 

evelop new compact models for the isothermal and isoflux cases. 

he developed models are compared and validated using experi- 

ental data available in the literature. 

. Mathematical modeling 

.1. Similarity solution for the energy equation 

Fig. 1 schematically shows the temperature profiles in the ther- 

al boundary layer (with a δT thickness) for a fluid with an ap- 

roaching temperature T ∞ 

and velocity V ∞ 

flowing over a heated 

phere with a radius a (or diameter D ). The energy equation is: 

c p 
∂T 

∂t 
+ ρc p 

−→ 

V ·
(−→ ∇ T 

)
= 

−→ ∇ ·
(

k 
−→ ∇ T 

)
+ βT 

Dp 

Dt 
+ μ	 (1) 

To simplify the problem, the following assumptions are made: 

• Non-porous solid sphere; 
• Steady-state heat transfer; 
• Incompressible laminar flow ( Re < 10 5 ) with constant fluid 

properties; 
• No flow separation; 
• Symmetry around the azimuthal angle (2-D problem in r and θ

directions); 
• Negligible pressure, gravity, and viscous dissipation terms; 
• Negligible heat conduction in the θ-direction; and 

• Oseen’s approximation, i.e., to linearize the convective term (ve- 

locity of the fluid around the sphere is everywhere parallel to 

the surface and is constant) [19] : [
v r 

∂T 

∂r 
+ 

v θ
r 

∂T 

∂θ

]
→ 

V 

r 

∂T 

∂θ
(2) 

Accordingly, the energy equation in spherical coordinates re- 

uces to the following: 

V 

α

∂T 

∂θ
= 

1 

r 

∂ 

∂r 

(
r 2 

∂T 

∂r 

)
r ≥ a 

0 ≤ θ ≤ π
(3) 

The coordinate system is transformed to set the wall as the co- 

rdinate reference. By defining a new coordinate system in the ra- 

ial direction as r ∗ = r − a , the energy equation becomes: 

V 

α

∂T 

∂θ
= r 

∂ 2 T 

∂ r 2 
+ 2 

∂T 

∂r 
= r ∗

∂ 2 T 

∂ r ∗2 
+ a 

∂ 2 T 

∂ r ∗2 
+ 2 

∂T 

∂ r ∗
(4) 

By performing a scale (order of magnitude) analysis and consid- 

ring that r ∗ ∼ δT , the terms on the right-hand side of Eq. (4) scale 

t: r ∗ ∂ 2 T 

∂ r ∗2 ∼ T 
δT 

, a ∂ 
2 T 

∂ r ∗2 ∼ a T 

δT 
2 , and 2 ∂T 

∂ r ∗ ∼ 2 T 
δT 

. One can note that 

he second term is an order of magnitude larger than the first and 

hird terms. Accordingly, Eq. (4) takes the following simpler form: 

V 

α

∂T 

∂θ
= a 

∂ 2 T 

∂ r ∗2 

r ∗ ≥ 0 

0 ≤ θ ≤ π
(5) 

By conducting a scale analysis, the scale of the thermal bound- 

ry layer thickness δT can be found: 

T ∼
√ 

αaθ

V 

= 

√ 

2 a 
√ 

θ√ 

Re D Pr 
(6) 
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Fig. 1. A schematic diagram of the temperature profiles in the thermal boundary layer. 
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A non-dimensional similarity parameter η can be defined as: 

= 

r ∗

δT 

(7) 

Eq. 5 is then reduced to an ordinary differential equation that 

as the following form: 

d 2 T 

dη2 
+ 

η

2 

dT 

dη
= 0 0 ≤ η ≤ ∞ (8) 

A non-dimensional temperature can be defined as: 

( η) = 

T ( η) − T ∞ 

T w 

( η) − T ∞ 

(9) 

here, T w 

is the sphere wall temperature ( T w 

= const . for isother- 

al sphere, and T w 

= T w 

(η) for isoflux sphere). 

.2. Isoflux boundary condition 

For the case of a sphere with constant heat flux at the wall, the 

oundary conditions for Eq. (8) are: 

 = a : 
dT 

dη

∣∣∣∣
r= a 

= −a 
˙ q ′′ w 

k 
(10a) 

 = ∞ : T = T ∞ 

(10b) 

By solving Eq. (8) after applying the above boundary conditions, 

he following expression can be used to find the temperature dis- 

ribution for the isoflux sphere case: 

 ( η) = T ∞ 

+ 

√ 

π

k 
δT ˙ q ′′ w 

[ 
1 − er f 

(
η

2 

)] 
(11) 

Or, in terms of r and θ : 

 ( r, θ ) = T ∞ 

+ 

√ 

π

k 

√ 

2 a √ 

Re D Pr 
˙ q ′′ w 

[ 

1 −er f 

( (
r − a 

2 

√ 

2 a 

)√ 

Re D Pr √ 

θ

) ] √ 

θ

(12) 

The local temperature at the wall, η = 0 , can be determined by: 

 w 

= T ∞ 

+ 

√ 

π

k 
δT ˙ q ′′ w 

(13) 
i

3 
.3. Isothermal boundary condition 

Considering the case in which the wall of the sphere is isother- 

al, the boundary conditions for Eq. (8) are: 

 = a : T = T w 

(14a) 

 = ∞ : T = T ∞ 

(14b) 

The temperature distribution for this case in terms of the simi- 

arity variable η can be found as: 

 ( η) = T w 

+ ( T w 

− T ∞ 

) er f 

(
η

2 

)
(15) 

The final form of the temperature distribution for the forced 

onvection over an isothermal sphere as a function of r and θ is: 

 ( r, θ ) = T w 

− ( T w 

− T ∞ 

) er f 

( (
r − a 

2 

√ 

2 a 

)√ 

Re D Pr √ 

θ

) 

(16) 

The local heat flux temperature at the wall can be evaluated by: 

˙ 
 

′′ 
w 

= −k 
dT 

dr 

∣∣∣∣
r= a 

= −k 

(
dT 

dη

∣∣∣∣
r= a 

)(
dη

dr 

)
= 

1 

π

( T w 

− T ∞ 

) 

δT 

(17) 

. Results and discussion 

Fig. 2 (a) and 2 (b) show the temperature distribution for flow 

ver a sphere with isoflux and isothermal boundary conditions at 

he wall, respectively, as evaluated using the expressions developed 

n this work, Eqs. (12) and (16) . For the purpose of showing the 

emperature variation inside the thermal boundary layer, the re- 

ults are shown for a low value of Reynolds number ( Re D = 10 0 0 )

nd a Prandtl number on the order of 1. For a sphere with a con-

tant heat flux boundary condition, the wall temperature increases 

radually in the angular direction θ and approaches its maximum 

t θ = π as illustrated by Fig. 2 (a). 

The temperature profiles at various locations in the thermal 

oundary layer are shown in Fig. 3 (a) and 3 (b) for the isoflux and

sothermal spheres, respectively. 
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Fig. 2. The temperature distribution for forced convection ( Re D = 10 0 0 , Pr = 1 ) over a sphere with: (a) a constant heat flux of ˙ q ′′ w = 100 W / m 

2 ; and (b) a uniform wall 

temperature of T w = 80 ◦C . 
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.1. Nusselt number expressions (isoflux and isothermal spheres) 

The heat transfer coefficient can be expressed in terms of 

he Nusselt number, Nu D = 

hD 
k 

. In the analysis, two heat transfer 

symptotes are considered; i) a conduction limit that represents 

he conduction heat transfer between the body and a surrounding 

tationary fluid; and ii) the other limit due to the advection (the 

ulk motion of the fluid) [ 16 , 20 , 21 ]. Accordingly, the total averaged

usselt number is determined by: 

u total = Nu ( conduction ) + Nu ( advection ) (18) 

The conduction limit can by determined by solving the conduc- 

ion energy equation for a stationary thin fluid film that surrounds 

 heated sphere, as follows [22] : 

∂ 

∂r 

(
r 2 

∂T 

∂r 

)
= 0 (19) 

For a flow with a constant wall heat flux, the boundary condi- 

ions are: 

 = a : 
∂T 

∂r 

∣∣∣∣
r= a 

= − ˙ q ′′ w 

k 
(20a) 

 = ∞ : T = T ∞ 

(20b) 

By applying the boundary conditions, the solution for 

q. (19) is: 

 = 

˙ q ′′ w 

a 2 

k 

1 

r 
+ T ∞ 

(21) 
4 
The temperature at the wall can be evaluated by: 

 w 

= T ∞ 

+ 

˙ q ′′ w 

a 

k 
(22) 

It follows that the conduction limit for an isoflux sphere is: 

u conduction = 

˙ q ′′ w 

( 2 a ) 

k ( T w 

− T ∞ 

) 
= 2 . 0 (23) 

The solution for Eq. (19) for a sphere with an isothermal bound- 

ry condition results in the same value ( Nu conduction = 2 ). 

The Nusselt number, due to the advection, can be obtained by 

tudying the thermal boundary layer. The local value for the Nus- 

elt number along the surface of a sphere is determined by: 

u advecion ( θ ) = 

h ( 2 a ) 

k 
= 

˙ q ′′ w 

( 2 a ) 

k ( T w 

− T ∞ 

) 
(24) 

By substitution, the expressions derived using the analysis pre- 

ented herein for the temperature distribution, Eq. (13) , for an 

soflux sphere, it follows that: 

u advecion ( θ ) = 0 . 798 

√ 

Re D Pr ( θ ) 
−1 / 2 

(25) 

Performing the same analysis for the isothermal sphere, 

q. (17) - to find the local heat flux at the wall - results in the

ame above expression, Eq. (25) . Accordingly, the averaged value 

u D can be determined by: 

u D = 

1 

A 

∫ ∫ 
A 

Nu · dA = 

1 

2 

π∫ 
0 

Nu D · sin ( θ ) dθ = 0 . 714 

√ 

Re D Pr (26) 
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Fig. 3. Normalized temperature profiles at various locations in the thermal bound- 

ary layer for: (a) an isoflux; and (b) an isothermal sphere. 

f

s

Fig. 5. Non-dimensional temperature distribution, �, as a function of the similarity 

variable η for laminar flow over isothermal and isoflux spheres. 
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Combining Eqs. (18) , (23) , and (26) , the total averaged value 

or the Nusselt number for the laminar forced convection over a 

phere with a uniform wall temperature or constant wall heat flux 
Fig. 4. Non-dimensional temperature distribution (

5 
an determined by: 

u D = 2 + 0 . 714 

√ 

Re D Pr (27) 

Our analysis indicates that the theoretical Nusselt number for 

soflux and isothermal cases are the same, i.e., one expression can 

e used for both cases. This result can be explained by substituting 

he expressions for T w 

using Eqs. (11) and (15) in Eq. (9) at η =
 . For both isothermal and isoflux spheres, the non-dimensional 

emperature distribution, defined by Eq. (9) , would be: 

( η) = 1 − er f 

(
η

2 

)
(28) 

Interestingly, with this definition, the form of the Nusselt 

umber and the non-dimensional temperature distribution over a 

phere with a constant heat flux boundary condition at the wall 

ould be identical to an isothermal sphere as shown in Fig. 4 . The

on-dimensional temperature profile as a function of the similar- 

ty variable η is plotted in Fig. 5 . By comparing this figure with 

ig. 3 (a) and 3(b), it can be observed that all curves collapse onto a

ingle curve. It is worth noting that at η � 5 , there is no change in

he temperature gradient, and that the scaling factor for the ther- 

al boundary layer can be considered as 5. Accordingly, the ther- 
see Eq. (28) ) in the thermal boundary layer. 
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Fig. 6. Validation of Eq. (27) with air experimental data for a sphere with constant wall heat flux (Kramers [6] ) . 

Fig. 7. Validation of Eq. (27) with the empirical correlations developed from the air data for an isothermal sphere (Drake and Backer [1] , Yuge [2] , and Raithby and Eckert 

[3] ). 
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al boundary layer thickness can determine by: 

T = 5 

√ 

αaθ

V 

= 5 

√ 

2 a 
√ 

θ√ 

Re D Pr 
(29) 

.2. Validation with experimental data 

To assess the validity of the presented model for both isoflux 

nd isothermal spheres, the Nusselt number values evaluated using 

q. (27) were compared with the data and empirical correlations 

vailable in the literature for both boundary conditions with Pr ∼
 . 

The experimental data collected by Kramers [6] (air, Pr = 0 . 71 )

or forced convection over sphere is used to validate the isoflux 

ase. In conducting the experiments, Kramers [6] used high fre- 

uency heating to induce volumetric heat generation from steel 

pheres, however; the temperature variation along the wall tem- 

erature was not reported. Due to the low thermal conductivity 

f steel and the low Reynolds numbers at which the experiments 

ere conducted ( Re D = 10 − 20 0 0 ), the variation in the tempera-

ure along the surface of the spheres may be significant and the 

eported Nusselt number values are actually for a forced convec- 

ion heat transfer from a sphere with constant heat flux boundary 

ondition at the wall. Fig. 6 shows that Eq. (27) represents a good 

greement for Kramers’ experimental data. 

The empirical correlations developed by Drake and Backer [1] , 

uge [2] , Raithby and Eckert [3] for a forced convection (of air) 

ver an isothermal sphere were used to assess the validity of 

q. (27) for this case. In these experiments, special care was taken 
6 
o ensure that there was no variation in the temperature along the 

urface of the sphere, i.e., the boundary condition at the wall was 

sothermal. One can observe from Fig. 7 that the Nusselt number 

alues calculated using Eq. (27) are in good agreement with the ex- 

erimental data for the forced convection over isothermal spheres. 

.3. General expression for Nusselt number 

The thickness of the hydrodynamic boundary layer, δH , can be 

reater or less than that of the thermal boundary layer δT . The 

randtl number is a non-dimensional number that represents the 

atio of the hydrodynamic boundary layer to the thermal boundary 

ayer, and the heat transfer rate is a function of this number, see 

q. (27) . The thickness of the hydrodynamic boundary layer is dic- 

ated by the velocity profile; therefore, it is important to define the 

elocity V in Eq. (3) . This section is devoted to further verify that 

he theoretical heat transfer coefficients for both isothermal and 

soflux spheres are the same by extending the analysis to cover a 

ide range of Prandtl numbers. To derive a general expression for 

he Nusselt number, we use the concept of the area-averaged effec- 

ive velocity V e discussed by Ahmed et al. [16] . Note that Ahmed 

t al. [16] transformed the energy equation in the spherical coor- 

inates to a form of a transient heat conduction to derive an ex- 

ression for the forced flow over an isothermal sphere and the 

nalysis led to the same expression presented here using a simi- 

arity solution, Eq. (27) . Ahmed et al. [16] assume that velocity is a 

ower-law function of r-direction in order to have a general form 

or the velocity profiles at different Reynolds number. The use of 

ower–law functions to approximate the velocity profiles through- 

ut the boundary layer was found to be a good assumption as it 
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Fig. 8. Validation of the present model, Eq. (35) , with the experimental data [6] for an isoflux sphere for: (a) Pr = 0 . 71 , (b) Pr = 7 . 3 , (c) Pr = 10 . 7 , (d) Pr = 213 , and (e) 

Pr = 380 . 
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as used for other geometries [23–25] . Ahmed et al. [16] derived 

xpressions for an area-averaged effective velocity at two asymp- 

otes, namely at Pr → 0 and Pr → ∞ : 

 

0 

e = 1 . 178 V ∞ 

when Pr → 0 (30) 

 

∞ 

e = 

1 . 178 V ∞ 

( 2 γ + 1 ) Pr 1 / 3 
when Pr → ∞ (31) 
7 
Ahmed et al. [16] used a blending technique to define the area- 

veraged effective velocity for the entire range of Pr as: 

 e = 

V 

∞ 

e [ 
1 + 

(
V 

∞ 
e 

V 
0 

e 

)n ] 1 /n 
(32) 

here, n is a fitting parameter determined by comparison against 

ata. By substituting Eq. (20) and (31) into Eq. (32) , it follows that: (
V e 

)n 

V 

= 

1 . 178 / 
[
( 2 γ + 1 ) Pr 1 / 3 

]
(

1 + 

[
1 / 2 ( 2 γ + 1 ) Pr 1 / 3 

]n 
)1 /n 

0 < Pr < ∞ (33) 
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Fig. 8. Continued 
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In the above equations, the parameter γ defines the form 

f the velocity profile for various Reynolds numbers. Ahmed 

t al. [16] suggested γ = 1 / Re 0 . 25 for a sphere. By substituting 

q. (33) into Eq. (27) , a general expression for the Nusselt num- 

er can be wirtten as: 

u D = 2 + 

0 . 779 

( 2 γ + 1 ) 
Re 1 / 2 

D 

Pr 1 / 3 [ 
1 + 

(
1 . 0 

( 2 γ +1 ) 
3 Pr 

)] 1 / 2 n (34) 

It should be noted that, to find the exponent n that gives the 

est match for Eq. (34) , Ahmed et al. [16] only considered a few

orrelations for air ( Pr = 0 . 7 ), namely, Yuge [2] , Churchill [26] , and

ovanovich [17] correlations, and proposed an exponent of n = 3 . 

n the present study, more data and empirical correlations for a 

ide range of Reynolds and Prandtl numbers were used to find 

he exponent in the aim to improve the accuracy and range of 

pplication of Eq. (34) . It includes the data and correlations pre- 

ented for liquid sodium with Pr = 0 . 01 (Sideman [13] ), air with

r = 0 . 7 to 2 (Drake and Backer [1] , Yuge [2] , Raithby and Eckert

3] , and Clift et al. [27] ), water with Pr = 7 to 10 (Kramers [6] , and

liet-Leppert [5] ), and oil with Pr = 213 and Pr = 380 (Kramers 

6] ). It was found that n = 500 gives the best fit for the aforemen-

ioned data. It is worth noting that with n = 500 , the denominator

 1 + ( 1 / ( 2 γ + 1 ) 3 Pr ) ] 
1 / 2 n 

in Eq. (34) approaches 1.0. Therefore, the 

ollowing general expression is proposed for evaluating the Nus- 

elt number for the laminar forced convection over isothermal or 

soflux spheres: 

u D = 2 + 

0 . 779 (
2 / Re 0 . 25 

D + 1 

)Re 1 / 2 
D 

Pr 1 / 3 
0 < Re < 10 

5 

0 < Pr < ∞ 

(35) 
8 
Fig. 8 (a) to 8(e) compare the proposed general expression for 

he Nusselt number with Kramers’ experimental data [6] at various 

randtl numbers for an isoflux sphere. The normalized root-mean- 

quare-error (NRMSE, %) is used to estimate the average error be- 

ween Eq. (35) and the Nusselt number data: 

RMSE [ % ] = 

√ 

n ∑ 

i =1 

( ̂ y i −y i ) 
2 

N 

n ∑ 

i =1 

y i 
N 

× 100% (36) 

here ˆ y i and y i are the predicted and experimental values, respec- 

ively, and N is the number of data points. For air data ( Pr = 0 . 7 ),

he NRMSE is calculated as 5.9%. Considering water data with the 

randtl numbers of Pr = 7 . 3 and Pr = 10 . 7 , the general analytical

xpression predicts the Nusselt number values with a NRMSE of 

1.7% and 4.5%, respectively. The errors of Eq. (35) from the oil 

ata for Pr = 213 and Pr = 380 are 16.6% and 26.3%, respectively. 

he low values of NRMSE suggest that Eq. (35) is valid for the 

orced convention over a sphere with constant flux at the wall as 

 boundary condition. 

Table 1 shows the NRMSE values for the proposed general ex- 

ression in this work ( Eq. (35) ) and the Ahmed et al. [16] expres-

ion when they are compared with Kramers’ data [6] . Both expres- 

ions almost have the same error when water and oil data are con- 

idered. However, for the air data, Eq. (35) has an error that is 50% 

ower than the value calculated for the Ahmed et al. expression 

16] . 

Fig. 9 (a) to 9(e) are presented to compare the Nusselt num- 

er values predicted by Eq. (35) and the Ahmed et al. [16] ex- 

ression with the correlations presented by Witte [28] , Yuge [2] , 
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Table 1 

The Normalized root-mean-square-error (NRMSE) values for Eq. (35) and the Ahmed et al. expression. 

Fluid 

Boundary 

condition Reference 

Root-mean-square-error, NRMSE [%] 

Ahmed et al. [16] Present work, Eq. (35) 

Liquid sodium: Pr = 0 . 01 Isothermal Witte [28] 83 83.1 

Air: 

Pr = 

0 . 7 

Isoflux Kramers [6] 11.7 5.9 

Isothermal Drake-Backer [1] 23.6 10 

Isothermal Yuge [2] 14.5 7.9 

Isothermal Raithby-Eckert [3] 12.4 11.3 

Water: 

Pr = 

7 

Isoflux Kramers [6] 11.5 11.7 

Isothermal Vliet-Leppert [5] 26.7 24.6 

Water: Pr = 10 Isoflux Kramers [6] 4.4 4.5 

Oil: Pr = 213 Isoflux Kramers [6] 17 16.6 

Oil: Pr = 380 Isoflux Kramers [6] 26.8 26.3 

Fig. 9. Validation of the present model, Eq. (35) , with the experimental data [ 1–3 , 5 , 28 ] for an isothermal sphere. 

9 
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Fig. 9. Continued 
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aithby- Eckert [3] , Drake-Backer [1] , and Vliet-Leppert [5] for the 

orced convection over an isothermal sphere. The errors of the ex- 

ressions from the aforementioned correlations are summarized in 

able 1 . Considering Witte’s data [28] for liquid sodium ( Pr = 0 . 01 ),

oth expressions tend to overestimate the Nusselt number values 

NRMSE = 83%), which is probably due to the difference in the ve- 

ocity profile in Witte’s experiments [28] compared to the one as- 

umed in developing the abovementioned expressions. The rela- 

ively large errors that result in predicting the Nusselt numbers 

y using Eq. (35) suggests that perhaps more experimental data 

t low Prandtl numbers ( Pr = 0 . 01 ) are needed to develop a bet-

er fit. For air data ( Pr = 0 . 7 ), Eq. (35) has a smaller error than

he expression proposed by Ahmed et al. [16] . In some cases, us- 

ng the Ahmed et al. [16] expression results in errors that are 

00% higher than that of Eq. (35) (see NRMSE values for Drake- 

acker [1] and Yuge [2] correlations in Table 1 ). The results pre- 

ented in Fig. 9 (e) and Table 1 show that both expressions have 

 relatively large error when compared with the correlation pro- 

osed by Vliet and Leppert [5] for water data ( Pr = 7 ). Neverthe-

ess, the proposed expression in this work results in an 8% smaller 

rror (NRMSE = 24.6%) compared to that calculated for the Ahmed 

t al. [16] expression (NRMSE = 26.7%). These high errors may be 

ttributed to the fact that both expressions do not account for 

he natural convection in the experiments done by Vliet and Lep- 

ert [5] as discussed in the Introduction section. The results pre- 

ented in Table 1 indicate the validity of Eq. (35) for both isother- 

al and isoflux spheres and support the conclusion derived earlier 

bout the similarity between the transfer coefficients for the lam- 

nar forced convection heat transfer from isoflux and isothermal 

pheres. 

t

10 
. Conclusion 

The analysis presented in this study revealed that the averaged 

usselt number for the laminar forced convection heat transfer is 

dentical for isothermal and isoflux spheres. This finding was ver- 

fied by comparing of the proposed model with the experimen- 

al data available in the literature. This result may be general- 

zed for packed spheres, and the correlations developed for flow 

ver isothermal spheres can be used to study the heat transfer 

n packed beds in which heat is generated at the surface of the 

pheres, as the case with adsorption reactors, without any loss of 

ccuracy. The analytical approach presented herein can be used 

o derive simple and compact expressions for Nusselt number for 

ther geometries in their respective coordinate systems. 
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