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A new analytical solution, based on scale analysis and similarity transformation, is presented to solve a
linearized form of the energy equation for the laminar forced convection over a sphere in a spherical co-
ordinate system. Compact expressions for temperature, wall heat flux, and Nusselt number are developed
as a function of the Reynolds number (Rep) and Prandtl number (Pr) for both isothermal and isoflux
boundary conditions. A blending method is used to extend the range of the present analytical expres-
sion to cover 0 < Rep < 10° and 0.7 < Pr < co. The present analysis reveals that the theoretical averaged-
Nusselt numbers for the laminar forced convection over isoflux (constant wall heat flux) and isothermal
(uniform wall temperature) spheres are identical. The proposed model is verified by comparing the ana-
lytical expression with the available experimental data over various Reynolds and Prandtl numbers.
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1. Introduction

Forced convection heat transfer from a solid sphere is an in-
teresting problem that can be found in many applications. Many
experimental studies were conducted to investigate the laminar
forced convection heat transfer from an isothermal sphere. Drake
and Backer [1] investigated the heat transfer from an isothermally
heated sphere to a rarefied gas in a supersonic flow and pro-
posed a correlation for air (Prandtl number, Pr = 0.7). Their cor-
relation was applicable for flows with a Reynolds number (Rep)
in the range of 0.1 < Rep < 2 x 10°. Yuge [2] presented a correla-
tion for the Nusselt number (Nu), for 10 < Rep < 1.5 x 10°, to esti-
mate the heat transfer from the isothermal spheres to an air flow.
Raithby and Eckert [3] conducted a careful study to show the ef-
fect of turbulence intensity on the average heat transfer from an
isothermal sphere to an air stream within the 3.6 x 10> < Rep <
5.2 x 10* range. Whitaker [4] collected and analyzed experimen-
tal data from the literature and proposed an easy-to-use correla-
tion for 3.5 < Rep < 7.6 x 10* and 0.7 < Pr < 380. Vliet and Lep-
pert [5] experimentally studied the forced convection heat trans-
fer from an isothermal sphere to liquid water flow. The authors
[5] argued that in regions where there was a large temperature
difference between the solid surface and water, the effect of the in-
duced natural convection might be significant, and recommended
an empirical correlation for calculating the average heat transfer
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coefficient from isothermal spheres to fluids with 2 < Pr < 380 for
1 < Rep < 3 x 10%. Kramers [6] carried out the most comprehen-
sive study for the forced convention heat transfer from a solid
sphere using air (Pr =0.71), water (Pr=7.3 and Pr = 10.7), and
oil (Pr=213 and Pr=380) as fluids to cover a wide range of
Prandtl numbers. Will et al. [7] experimentally investigated the
forced convection over isothermal spheres with the focus on fluid
flows with higher Reynolds numbers (>3.3 x 10°) than those con-
sidered in previous studies. They [7] claimed that there was a crit-
ical Reynolds number beyond which there would be a sudden in-
crease in the Nusselt number.

Developing an analytical model to study the forced convection
over a sphere is considered a complex task without neglecting
the flow separation that occurs at Rep > 20. The analysis of the
mass transport process from the surface of a sphere can be used
to estimate the heat transfer, i.e., due to the analogy between the
two processes. Lee and Barrow [8] used an approximate integral
method to solve the integrated boundary-layer equations for ax-
isymmetric flow over a sphere from the forward stagnation up to
the point of separation by assuming quartics velocity and tempera-
ture profiles. An integral method was also used by Garner and Keey
[9] to study the forced convection mass transfer from a sphere
at low Reynolds numbers (2.3 to 255). An earlier modeling ap-
proach using an integral method was presented by Frossling [10],
who estimated the mass transfer rate for a naphthalene droplet
evaporating in air (Pr = 2.53) by analytically analyzing a laminar
boundary layer. Linton and Sutherland [11] compared the heat and
mass transfer rates predicted by the theoretical work of Fréssling
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Nomenclature

a radius of a sphere, m

A surface area of a sphere, m?

D diameter of a sphere, m

h convective heat transfer coefficient, W/m2-K
k thermal conductivity, W/m-K

Nu Nusselt number, -

Pr Prandtl number, -

r radial direction, m

Re Reynolds number, -

T temperature, K

1% velocity, m/s

Ve surface averaged-effective velocity, m/s
ql wall heat flux, W/m?

Greek symbols

0 density, kg/m?3

B thermal expansion coefficient, 1/K

a thermal diffusivity, m?/s

0 polar angle, rad

02 non-dimensional temperature, -

n similarity variable, -

St thermal boundary layer thickness, m
Sy hydrodynamic boundary layer thickness, m
P viscous dissipation, m?2/s2

Subscripts

00 related to ambient fluid

w related to wall

[10] with the experimental data available in the literature for a
flow over a sphere. Although, the theoretical local transfer rates
were in fair agreement with the experimental data over the front
half of the sphere, the results showed that the experimental local
values at the front stagnation point were 44% lower than for the
theory and differed considerably between studies in the literature.

Several studies were carried out to develop analytical solutions
for the forced convection heat transfer from a sphere. Hsu [12] and
Sideman [13] derived analytical expressions to estimate the Nusselt
number for liquid metals (Pr ~ 0.01) flowing past a single sphere
by assuming a potential flow. Using the Laplace transform method,
Drake and Backer [1] obtained an expression for the Nusselt num-
ber by solving a simplified energy equation for the forced convec-
tion over an isothermal sphere. Johnstone et al. [14] used a sepa-
ration of variables method to provide a series solution for the lam-
inar flow over an isothermal sphere by assuming a constant fluid
velocity over the sphere. The separation of variables method was
also used by Dennis et al. [15], who developed an analytical solu-
tion for the forced convection of viscous flows over an isothermal
sphere at low values of Reynolds numbers. Ahmed et al. [16] de-
veloped an analytical solution for the laminar flow over a sphere
by approximating the energy equation to a form of a transient
heat conduction equation for which a solution was available. They
[16] presented expressions for a surface averaged-effective veloc-
ity at two asymptotes (Pr « 1 and Pr>» 1) and used a blending
technique to develop a general expression for the Nusselt number
that was valid for 0 < Rep < 2 x 10% and all Prandtl numbers. The
blending method was used earlier by Yovanovich [17] to provide a
general expression for the heat transfer coefficient for isopotential
spheroids. In another work, Ahmed et al. [18] included the influ-
ence of the turbulence level on the heat transfer characteristics in
their modeling approach.

Our literature survey suggests that most of the experimental
and theoretical studies were focused on forced convection over an
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isothermal sphere and that there is scarcity of information about
isoflux spheres (constant surface heat flux). To the best of our
knowledge, there is no study that compared the theoretical heat
transfer coefficients for isothermal and isoflux spheres. To this end,
the objective of this study is to address this gap by developing new
and compact expressions for temperature distribution and heat
flux for the laminar forced convection heat transfer from a heated
sphere, for both isothermal and isoflux boundary conditions. Both
scale analysis and similarity transformation approaches are used to
develop new compact models for the isothermal and isoflux cases.
The developed models are compared and validated using experi-
mental data available in the literature.

2. Mathematical modeling
2.1. Similarity solution for the energy equation

Fig. 1 schematically shows the temperature profiles in the ther-
mal boundary layer (with a 87 thickness) for a fluid with an ap-
proaching temperature T, and velocity V,, flowing over a heated
sphere with a radius a (or diameter D). The energy equation is:

pcp%—:+pcp7~ <§)T) =_V)-(I<€T)+,BT%+M<I> (1)
To simplify the problem, the following assumptions are made:

* Non-porous solid sphere;

Steady-state heat transfer;

Incompressible laminar flow (Re < 10°) with constant fluid
properties;

» No flow separation;

o Symmetry around the azimuthal angle (2-D problem in r and 6
directions);

Negligible pressure, gravity, and viscous dissipation terms;
Negligible heat conduction in thef-direction; and

Oseen’s approximation, i.e., to linearize the convective term (ve-
locity of the fluid around the sphere is everywhere parallel to
the surface and is constant) [19]:

[ar vgar} vV aT
Vr—— +
ar

— — == 2

r a6 | T 2)

Accordingly, the energy equation in spherical coordinates re-
duces to the following:

Vor _1 i 20T rza (3)
adg ~ror\" ar) o<6<n

The coordinate system is transformed to set the wall as the co-
ordinate reference. By defining a new coordinate system in the ra-
dial direction as r* = r — a, the energy equation becomes:
V8T 82T 2al L 0°T +a82T . aT (4)
o360 ~ 8r2 or 81‘*2 ors or+

By performing a scale (order of magnitude) analysis and consid-
ering that r* ~ &7, the terms on the right hand side of Eq. (4) scale

2
at: 2T L T adT ~qL, and 2L ~2T One can note that
ar? B DRz T2 o

the second term is an order of magnitude larger than the first and
third terms. Accordingly, Eq. (4) takes the following simpler form:

vor _ o1
adf or

By conducting a scale analysis, the scale of the thermal bound-
ary layer thicknessdr can be found:

b |20 _ 200 ©)

14 +/ Rep Pr

>0
0<fO<m

(3)
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Boundary condition at the wall:
T =T (isothermal)

or

dr q.

E,ﬁg = (1soflux)

Fig. 1. A schematic diagram of the temperature profiles in the thermal boundary layer.

A non-dimensional similarity parameter n can be defined as:
r*
- 7
n=73 (7)

Eq. 5 is then reduced to an ordinary differential equation that
has the following form:

d’T ndT
aE T2y =0 05T=> (®)
A non-dimensional temperature can be defined as:
T(n) - Tx
OMm) = ——t0— 2 9
() To(n) — T 9)

where, T, is the sphere wall temperature (T, = const.for isother-
mal sphere, and T,y = T (1) for isoflux sphere).

2.2. Isoflux boundary condition

For the case of a sphere with constant heat flux at the wall, the
boundary conditions for Eq. (8) are:

S
r=a: % :_aqT(W (10a)
r=oc0:T=T, (10b)

By solving Eq. (8) after applying the above boundary conditions,
the following expression can be used to find the temperature dis-
tribution for the isoflux sphere case:

T .
T =Tt Wsrapf1-erp(2)] (1)
Or, in terms of r and 6 :

_ JT N2a ., r—a\+/RepPr
T(r,@)_Tw+kmqw|:l—erf<<m1>ﬁ):|/5

(12)

The local temperature at the wall, n = 0, can be determined by:

ﬁ

2.3. Isothermal boundary condition

Considering the case in which the wall of the sphere is isother-
mal, the boundary conditions for Eq. (8) are:

r=a:T=Ty (14a)

r=oc0:T=T, (14b)

The temperature distribution for this case in terms of the simi-
larity variable n can be found as:

T(n) =Tw+ (TW—Too)erf@) (15)

The final form of the temperature distribution for the forced
convection over an isothermal sphere as a function of r and 6 is:

T(r,0) =T, — (TW—Tw)erf(<£ﬁi>W) (16)

The local heat flux temperature at the wall can be evaluated by:
_ k[T dny _10w=Tx) 4y
dn dr b4 o1
r=a r=a

3. Results and discussion

Fig. 2(a) and 2(b) show the temperature distribution for flow
over a sphere with isoflux and isothermal boundary conditions at
the wall, respectively, as evaluated using the expressions developed
in this work, Eqs. (12) and (16). For the purpose of showing the
temperature variation inside the thermal boundary layer, the re-
sults are shown for a low value of Reynolds number (Rep = 1000)
and a Prandtl number on the order of 1. For a sphere with a con-
stant heat flux boundary condition, the wall temperature increases
gradually in the angular direction 6 and approaches its maximum
at @ = as illustrated by Fig. 2(a).

The temperature profiles at various locations in the thermal
boundary layer are shown in Fig. 3(a) and 3(b) for the isoflux and
isothermal spheres, respectively.
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Fig. 2. The temperature distribution for forced convection (Rep = 1000, Pr = 1) over a sphere with: (a) a constant heat flux of ¢/, = 100W/m?; and (b) a uniform wall

temperature of T, = 80°C.

3.1. Nusselt number expressions (isoflux and isothermal spheres)

The heat transfer coefficient can be expressed in terms of
the Nusselt number, Nup = ”,—(D. In the analysis, two heat transfer
asymptotes are considered; i) a conduction limit that represents
the conduction heat transfer between the body and a surrounding
stationary fluid; and ii) the other limit due to the advection (the
bulk motion of the fluid) [16,20,21]. Accordingly, the total averaged

Nusselt number is determined by:

mtotal = m(conduction) + m(advection) (18)

The conduction limit can by determined by solving the conduc-
tion energy equation for a stationary thin fluid film that surrounds
a heated sphere, as follows [22]:

3 (9T
8r<r 81’>_0 (19)

For a flow with a constant wall heat flux, the boundary condi-
tions are:

. oT dw
r=a: o =% (20a)
r=a
r=o0:T=T, (20b)

By applying the boundary conditions, the solution for

Eq. (19) is:
a2
T:q“”(a %+Tm Q1)

The temperature at the wall can be evaluated by:

1
Ty = T+ 22 (22)
It follows that the conduction limit for an isoflux sphere is:
_ q'// za
Nuconduction = ﬁ =20 (23)

The solution for Eq. (19) for a sphere with an isothermal bound-
ary condition results in the same value (NUconduction = 2)-

The Nusselt number, due to the advection, can be obtained by
studying the thermal boundary layer. The local value for the Nus-
selt number along the surface of a sphere is determined by:

h(2a T (2a
Nuadvecion(e) = (k ) = k(ng(_T) )

By substitution, the expressions derived using the analysis pre-
sented herein for the temperature distribution, Eq. (13), for an
isoflux sphere, it follows that:

Nulagyecion (8) = 0.798+/Rep Pr(6) /2 (25)

Performing the same analysis for the isothermal sphere,
Eq. (17) - to find the local heat flux at the wall - results in the
same above expression, Eq. (25). Accordingly, the averaged value
Nup can be determined by:

(24)

s
Nup = % // Nu-dA = %[NuD -sin (9)d® = 0.714,/Rep Pr (26)
A
0
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Fig. 3. Normalized temperature profiles at various locations in the thermal bound-
ary layer for: (a) an isoflux; and (b) an isothermal sphere.

Combining Eqs. (18), (23), and (26), the total averaged value
for the Nusselt number for the laminar forced convection over a
sphere with a uniform wall temperature or constant wall heat flux
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e
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Non-dimensional y-axis, Y [-]
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Non-dimensional temperature, © [-]

10

Similarity variable, n [-]

Fig. 5. Non-dimensional temperature distribution,®, as a function of the similarity
variable n for laminar flow over isothermal and isoflux spheres.

can determined by:

Nup = 2 + 0.714,/Rep Pr (27)

Our analysis indicates that the theoretical Nusselt number for
isoflux and isothermal cases are the same, i.e., one expression can
be used for both cases. This result can be explained by substituting
the expressions for T,, using Eqs. (11) and (15) in Eq. (9) at n =
0. For both isothermal and isoflux spheres, the non-dimensional
temperature distribution, defined by Eq. (9), would be:

O =1- erf(%) (28)

Interestingly, with this definition, the form of the Nusselt
number and the non-dimensional temperature distribution over a
sphere with a constant heat flux boundary condition at the wall
would be identical to an isothermal sphere as shown in Fig. 4. The
non-dimensional temperature profile as a function of the similar-
ity variable n is plotted in Fig. 5. By comparing this figure with
Fig. 3(a) and 3(b), it can be observed that all curves collapse onto a
single curve. It is worth noting that at n ~ 5, there is no change in
the temperature gradient, and that the scaling factor for the ther-
mal boundary layer can be considered as 5. Accordingly, the ther-

Non-dimensional temperature, © [-]

0 1 1
-1 -0.5 0

0.5 1

Non-dimensional x-axis, X [-]

Fig. 4. Non-dimensional temperature distribution (see Eq. (28)) in the thermal boundary layer.
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Fig. 7. Validation of Eq. (27) with the empirical correlations developed from the air data for an isothermal sphere (Drake and Backer [1], Yuge [2], and Raithby and Eckert

13D

mal boundary layer thickness can determine by:

5y =5,/ 990 _ 5 Y20Y0
4 +/Rep Pr

(29)

3.2. Validation with experimental data

To assess the validity of the presented model for both isoflux
and isothermal spheres, the Nusselt number values evaluated using
Eq. (27) were compared with the data and empirical correlations
available in the literature for both boundary conditions with Pr ~
1.

The experimental data collected by Kramers [6] (air, Pr = 0.71)
for forced convection over sphere is used to validate the isoflux
case. In conducting the experiments, Kramers [6] used high fre-
quency heating to induce volumetric heat generation from steel
spheres, however; the temperature variation along the wall tem-
perature was not reported. Due to the low thermal conductivity
of steel and the low Reynolds numbers at which the experiments
were conducted (Rep = 10 — 2000), the variation in the tempera-
ture along the surface of the spheres may be significant and the
reported Nusselt number values are actually for a forced convec-
tion heat transfer from a sphere with constant heat flux boundary
condition at the wall. Fig. 6 shows that Eq. (27) represents a good
agreement for Kramers’ experimental data.

The empirical correlations developed by Drake and Backer [1],
Yuge [2], Raithby and Eckert [3] for a forced convection (of air)
over an isothermal sphere were used to assess the validity of
Eq. (27) for this case. In these experiments, special care was taken

to ensure that there was no variation in the temperature along the
surface of the sphere, i.e., the boundary condition at the wall was
isothermal. One can observe from Fig. 7 that the Nusselt number
values calculated using Eq. (27) are in good agreement with the ex-
perimental data for the forced convection over isothermal spheres.

3.3. General expression for Nusselt number

The thickness of the hydrodynamic boundary layer, §y, can be
greater or less than that of the thermal boundary layer &r. The
Prandtl number is a non-dimensional number that represents the
ratio of the hydrodynamic boundary layer to the thermal boundary
layer, and the heat transfer rate is a function of this number, see
Eq. (27). The thickness of the hydrodynamic boundary layer is dic-
tated by the velocity profile; therefore, it is important to define the
velocity Vin Eq. (3). This section is devoted to further verify that
the theoretical heat transfer coefficients for both isothermal and
isoflux spheres are the same by extending the analysis to cover a
wide range of Prandtl numbers. To derive a general expression for
the Nusselt number, we use the concept of the area-averaged effec-
tive velocity V. discussed by Ahmed et al. [16]. Note that Ahmed
et al. [16] transformed the energy equation in the spherical coor-
dinates to a form of a transient heat conduction to derive an ex-
pression for the forced flow over an isothermal sphere and the
analysis led to the same expression presented here using a simi-
larity solution, Eq. (27). Ahmed et al. [16] assume that velocity is a
power-law function of r-direction in order to have a general form
for the velocity profiles at different Reynolds number. The use of
power-law functions to approximate the velocity profiles through-
out the boundary layer was found to be a good assumption as it
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Fig. 8. Validation of the present model, Eq. (35), with the experimental data [6] for an isoflux sphere for: (a) Pr =0.71, (b) Pr= 7.3, (c¢) Pr=10.7, (d) Pr =213, and (e)

Pr = 380.

was used for other geometries [23-25]. Ahmed et al. [16] derived
expressions for an area-averaged effective velocity at two asymp-
totes, namely at Pr — 0 and Pr — oo:

VY = 1.178V., when Pr — 0 (30)

7 1.178V

. :thenpraoo (31)

Ahmed et al. [16] used a blending technique to define the area-
averaged effective velocity for the entire range of Pr as:

=00

v Ve

= 7 na1/n
[+ ()]

where, n is a fitting parameter determined by comparison against
data. By substituting Eq. (20) and (31) into Eq. (32), it follows that:

(Ve)" _
Vv

(32)

1.178/[ 2y + 1)Pr'?]

(1 +[1/20y + 1)Pr”3]")

(33)

0<Pr<oco
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Fig. 8. Continued

In the above equations, the parameter y defines the form
of the velocity profile for various Reynolds numbers. Ahmed
et al. [16] suggested y = 1/Re%?> for a sphere. By substituting
Eq. (33) into Eq. (27), a general expression for the Nusselt num-
ber can be wirtten as:

0.779 _ 1p pr'/3

=2+ e
@+ P (o 1/2n
y+1)°Pr

It should be noted that, to find the exponent n that gives the
best match for Eq. (34), Ahmed et al. [16] only considered a few
correlations for air (Pr = 0.7), namely, Yuge [2], Churchill [26], and
Yovanovich [17] correlations, and proposed an exponent of n = 3.
In the present study, more data and empirical correlations for a
wide range of Reynolds and Prandtl numbers were used to find
the exponent in the aim to improve the accuracy and range of
application of Eq. (34). It includes the data and correlations pre-
sented for liquid sodium with Pr=0.01 (Sideman [13]), air with
Pr = 0.7to2 (Drake and Backer [1], Yuge [2], Raithby and Eckert
[3], and Clift et al. [27]), water with Pr = 7to10 (Kramers [6], and
Vliet-Leppert [5]), and oil with Pr =213 and Pr =380 (Kramers
[6]). It was found that n = 500 gives the best fit for the aforemen-
tioned data. It is worth noting that with n = 500, the denominator
[T+ /2y + 1)° Pr)]l/znin Eq. (34) approaches 1.0. Therefore, the
following general expression is proposed for evaluating the Nus-
selt number for the laminar forced convection over isothermal or
isoflux spheres:

Nup (34)

0.779
(2/Rep? +1)

0 <Re <10°

Rel/2py1/3
D 0 <Pr<oo

Nup =2 + (35)

Fig. 8(a) to 8(e) compare the proposed general expression for
the Nusselt number with Kramers’ experimental data [6] at various
Prandtl numbers for an isoflux sphere. The normalized root-mean-
square-error (NRMSE, %) is used to estimate the average error be-
tween Eq. (35) and the Nusselt number data:

i (ﬁi*J’i)z

) N
T «100% (36)
2

1
where J; and y; are the predicted and experimental values, respec-
tively, and N is the number of data points. For air data (Pr = 0.7),
the NRMSE is calculated as 5.9%. Considering water data with the
Prandtl numbers of Pr=7.3 and Pr = 10.7, the general analytical
expression predicts the Nusselt number values with a NRMSE of
11.7% and 4.5%, respectively. The errors of Eq. (35) from the oil
data for Pr =213 and Pr =380 are 16.6% and 26.3%, respectively.
The low values of NRMSE suggest that Eq. (35) is valid for the
forced convention over a sphere with constant flux at the wall as
a boundary condition.

Table 1 shows the NRMSE values for the proposed general ex-
pression in this work (Eq. (35)) and the Ahmed et al. [16] expres-
sion when they are compared with Kramers’ data [6]. Both expres-
sions almost have the same error when water and oil data are con-
sidered. However, for the air data, Eq. (35) has an error that is 50%
lower than the value calculated for the Ahmed et al. expression
[16].

Fig. 9(a) to 9(e) are presented to compare the Nusselt num-
ber values predicted by Eq. (35) and the Ahmed et al. [16] ex-
pression with the correlations presented by Witte [28], Yuge [2],

NRMSE[%] =

i

Z|=

1
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Table 1
The Normalized root-mean-square-error (NRMSE) values for Eq. (35) and the Ahmed et al. expression.
Boundary Root-mean-square-error, NRMSE [%]
Fluid condition Reference
Ahmed et al. [16] Present work, Eq. (35)
Liquid sodium: Pr = 0.01 Isothermal  Witte [28] 83 83.1
Air: Isoflux Kramers [6] 11.7 5.9
Pr= Isothermal Drake-Backer [1] 23.6 10
0.7 Isothermal  Yuge [2] 14.5 7.9
Isothermal  Raithby-Eckert [3] 12.4 11.3
Water: Isoflux Kramers [6] 11.5 11.7
Pr= Isothermal  Vliet-Leppert [5] 26.7 24.6
Water: Pr=10 Isoflux Kramers [6] 4.4 4.5
Qil: Pr=213 Isoflux Kramers [6] 17 16.6
Qil: Pr =380 Isoflux Kramers [6] 26.8 26.3
100: — e
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...... Ahmed et al.
—— Present model, Eq. (35): NUp = 2 + [0.779/(2Re *25+1)] Re'2 Pr'/®
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Fig. 9. Validation of the present model, Eq. (35), with the experimental data [1-3,5,28] for an isothermal sphere.
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Fig. 9. Continued

Raithby- Eckert [3], Drake-Backer [1], and Vliet-Leppert [5] for the
forced convection over an isothermal sphere. The errors of the ex-
pressions from the aforementioned correlations are summarized in
Table 1. Considering Witte's data [28] for liquid sodium (Pr = 0.01),
both expressions tend to overestimate the Nusselt number values
(NRMSE=83%), which is probably due to the difference in the ve-
locity profile in Witte's experiments [28] compared to the one as-
sumed in developing the abovementioned expressions. The rela-
tively large errors that result in predicting the Nusselt numbers
by using Eq. (35) suggests that perhaps more experimental data
at low Prandtl numbers (Pr = 0.01) are needed to develop a bet-
ter fit. For air data (Pr=0.7), Eq. (35) has a smaller error than
the expression proposed by Ahmed et al. [16]. In some cases, us-
ing the Ahmed et al. [16] expression results in errors that are
100% higher than that of Eq. (35) (see NRMSE values for Drake-
Backer [1] and Yuge [2] correlations in Table 1). The results pre-
sented in Fig. 9(e) and Table 1 show that both expressions have
a relatively large error when compared with the correlation pro-
posed by Vliet and Leppert [5] for water data (Pr = 7). Neverthe-
less, the proposed expression in this work results in an 8% smaller
error (NRMSE=24.6%) compared to that calculated for the Ahmed
et al. [16] expression (NRMSE=26.7%). These high errors may be
attributed to the fact that both expressions do not account for
the natural convection in the experiments done by Vliet and Lep-
pert [5] as discussed in the Introduction section. The results pre-
sented in Table 1 indicate the validity of Eq. (35) for both isother-
mal and isoflux spheres and support the conclusion derived earlier
about the similarity between the transfer coefficients for the lam-
inar forced convection heat transfer from isoflux and isothermal
spheres.
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5. Conclusion

The analysis presented in this study revealed that the averaged
Nusselt number for the laminar forced convection heat transfer is
identical for isothermal and isoflux spheres. This finding was ver-
ified by comparing of the proposed model with the experimen-
tal data available in the literature. This result may be general-
ized for packed spheres, and the correlations developed for flow
over isothermal spheres can be used to study the heat transfer
in packed beds in which heat is generated at the surface of the
spheres, as the case with adsorption reactors, without any loss of
accuracy. The analytical approach presented herein can be used
to derive simple and compact expressions for Nusselt number for
other geometries in their respective coordinate systems.
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